Practice 4

Topic: Algebra of structural transformations

Rule 1. The transfer function of the consistently connected parts is equal to product of separate transfer functions of parts which are included in a chain:

$$\mathbf{W}(\mathbf{s}) = \prod_{i=1}^{k} W_i(s)$$

Rule 2. The transfer function of the in parallel connected parts is equal to the sum of transfer functions of separate parts which are included in a chain:

$$\mathbf{W}(\mathbf{s}) = \sum_{j=1}^{n} W_j(s) \, .$$

Rule 3. The transfer function of the closed contour of system is equal transfer function of a direct part, division on 1 plus product of transfer function of a direct part of system $W_{dr}(s)$ on transfer function of a feedback $W_{fb}(s)$:

$$W_{cl}(s) = \frac{W_{dr}(s)}{1 + W_{dr}(s)W_{fb}(s)}$$

Rule 4. Carry of unit through a part. If unit is transferred against a direction of the basic signal, in system the part with transfer function, opposite to the transferred part is added:

Rule 5. Carry of unit through a part. If unit is transferred in a direction of the basic signal, in system the part with the transfer function equal to a transferred part is added:

Rule 6. Carry of a point of branching. If the point of branching is transferred against a direction of the basic signal, in system the part with the transfer function equal to a transferred part is added:

Rule 7. If the point of branching is transferred in a direction of the basic signal, in system the part with transfer function, opposite to the transferred part is added:

Example. The structural diagram of the following look is set:

To receive transfer function of system if transfer functions of separate links are set $W_1(s) \div W_6(s)$.

Algorithm and solving

1) We carry out decomposition of the given system on the known circuits; we write transfer functions of the selected circuits according to rules.

 $W_7(s) = W_3(s) + W_4(s)$

2)
$$W_8(s) = W_1(s) W_2(s)$$

We show what we do conversions:

We receive transfer functions of the intermediate links:

$$W_{9}(s) = \frac{W_{8}(s)}{1 + W_{6}(s)W_{8}(s)} = \frac{W_{1}(s)W_{2}(s)}{1 + W_{1}(s)W_{2}(s)W_{6}(s)}$$
$$W_{10}(s) = W_{7}(s) W_{9}(s) = [W_{3}(s) + W_{4}(s)] W_{9}(s)$$
$$W_{11}(s) = \frac{W_{10}(s)}{1 + \frac{W_{5}(s)W_{10}(s)}{W_{8}(s)}} = \frac{W_{8}(s)W_{10}(s)}{W_{8}(s) + W_{5}(s)W_{10}(s)}$$

5) We receive transfer function of the whole system:

$$W(s) = \frac{W_{11}(s)}{1 + W_{11}(s)}.$$

6) Having added the given transfer functions of separate links in transfer function of the whole system, we will receive required transfer function of system through basic data:

$$W(s) = \frac{W_1(s)W_2(s)[W_3(s) + W_4(s)]}{1 + W_1(s)W_2(s)W_6(s) + W_5(s)[W_3(s) + W_4(s)] + W_1(s)W_2(s)[W_3(s) + W_4(s)]}$$

Task (on variant)

Let are given the transfer functions of separate parts of system. Receive transfer function of all system as a whole.

Variants:

2)

8)

5

10)

9)

