Practice 4

Topic: Algebra of structural transformations

Rule 1. The transfer function of the consistently connected parts is equal to product of separate transfer functions of parts which are included in a chain:

$$
\mathrm{W}(\mathrm{~s})=\prod_{i=1}^{k} W_{i}(s) .
$$

Rule 2. The transfer function of the in parallel connected parts is equal to the sum of transfer functions of separate parts which are included in a chain:

$$
\mathrm{W}(\mathrm{~s})=\sum_{j=1}^{n} W_{j}(\mathrm{~s}) .
$$

Rule 3. The transfer function of the closed contour of system is equal transfer function of a direct part, division on 1 plus product of transfer function of a direct part of system $W_{d r}(s)$ on transfer function of a feedback $W_{f b}(s)$:

$$
\mathrm{W}_{c l}(\mathrm{~s})=\frac{W_{d r}(s)}{1+W_{d r}(s) W_{f b}(s)}
$$

Rule 4. Carry of unit through a part. If unit is transferred against a direction of the basic signal, in system the part with transfer function, opposite to the transferred part is added:
a)

Rule 5. Carry of unit through a part. If unit is transferred in a direction of the basic signal, in system the part with the transfer function equal to a transferred part is added:

Rule 6. Carry of a point of branching. If the point of branching is transferred against a direction of the basic signal, in system the part with the transfer function equal to a transferred part is added:
a)

Rule 7. If the point of branching is transferred in a direction of the basic signal, in system the part with transfer function, opposite to the transferred part is added:
в)

Example. The structural diagram of the following look is set:

To receive transfer function of system if transfer functions of separate links are set $W_{l}(s) \div W_{6}(s)$.

Algorithm and solving

1) We carry out decomposition of the given system on the known circuits; we write transfer functions of the selected circuits according to rules.

$$
\mathrm{W}_{7}(\mathrm{~s})=\mathrm{W}_{3}(\mathrm{~s})+\mathrm{W}_{4}(\mathrm{~s})
$$

2) $\mathrm{W}_{8}(\mathrm{~s})=\mathrm{W}_{1}(\mathrm{~s}) \mathrm{W}_{2}(\mathrm{~s})$

We show what we do conversions:

We receive transfer functions of the intermediate links:

$$
\begin{gathered}
\mathrm{W}_{9}(\mathrm{~s})=\frac{W_{8}(s)}{1+W_{6}(s) W_{8}(s)}=\frac{W_{1}(s) W_{2}(s)}{1+W_{1}(s) W_{2}(s) W_{6}(s)} \\
\mathrm{W}_{10}(\mathrm{~s})=\mathrm{W}_{7}(\mathrm{~s}) \mathrm{W}_{9}(\mathrm{~s})=\left[\mathrm{W}_{3}(\mathrm{~s})+\mathrm{W}_{4}(\mathrm{~s})\right] \mathrm{W}_{9}(\mathrm{~s}) \\
\mathrm{W}_{11}(\mathrm{~s})=\frac{W_{10}(s)}{1+\frac{W_{5}(s) W_{10}(s)}{W_{8}(s)}}=\frac{W_{8}(s) W_{10}(s)}{W_{8}(s)+W_{5}(s) W_{10}(s)}
\end{gathered}
$$

5) We receive transfer function of the whole system:

$$
\mathrm{W}(\mathrm{~s})=\frac{W_{11}(s)}{1+W_{11}(s)} .
$$

6) Having added the given transfer functions of separate links in transfer function of the whole system, we will receive required transfer function of system through basic data:

$$
W(s)=\frac{W_{1}(s) W_{2}(s)\left[W_{3}(s)+W_{4}(s)\right]}{1+W_{1}(s) W_{2}(s) W_{6}(s)+W_{5}(s)\left[W_{3}(s)+W_{4}(s)\right]+W_{1}(s) W_{2}(s)\left[W_{3}(s)+W_{4}(s)\right]} .
$$

Task (on variant)

Let are given the transfer functions of separate parts of system. Receive transfer function of all system as a whole.

Variants:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

